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Algorithm-Based Low-Power Transform Coding Architectures-
Part I: The Multirate Approach

An-Yeu Wu and K. J. Ray Liu
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University of Maryland
College Park, MD 20742
Phone: (301) 405-6619, Fax: (301) 405-6707

ABSTRACT

In most low-power VLSI designs, the supply voltage is usually reduced to lower the total power
consumption. However, the device speed will be degraded as the supply voltage goes down. In
this paper, we propose new algorithmic-level techniques for compensating the increased delays based
on the multirate approach. We present two methods, the Chebyshev polynomial approach and the
polyphase decomposition approach, to design low-power but high-speed transform coding architec-
tures. We will show how to compute the discrete cosine transform (DCT) and its inverse (IDCT)
through the decimated low-speed sequences with reasonable linear hardware overhead. For the case
the decimation factor equal to two, the overall power consumption can be reduced to about one-third
of the original design at the architectural level. Extension of our design to higher decimation rate is
also achievable and can result in even lower power consumption. The resulting multirate low-power
architectures are regular, modular, and free of global communications. Also, the compensation ca-
pability is achieved at the expense of locally increased hardware and data paths. As a consequence,
they are very suitable for VLSI implementation. The proposed architectures can also be applied to
very high-speed block transforms where only low-speed operators are required. The extensions of the
algorithm-based low-power design, such as the unified transform architecture and finite-wordlength
effect of the design, will be discussed in the companion paper.

This work was supported in part by the ONR grant N00014-93-10566 and the NSF NYI Award
MIP9457397.
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1 Introduction

Recent developments in personal communications services (PCS) have now made it possible to in-
tegrate voice, image, and cellular phone networks in a personal communicator. Due to the limited
power-supply capability of current battery technology, the power constraint becomes an important
consideration in the design of PCS devices. It has been shown that a reduction of the supply voltage
is the leveraged decision to lower the power consumption. However, a speed penalty is suffered for
the devices (operators) as the supply voltage goes down [1]. In order to meet the low-power/high-
throughput constraint, the key issue is to “compensate” the increased delay so that the device can
be operated at the slowest possible speed while maintaining the same data sample rate. In [1], the
techniques of “parallel processing” and “pipelining” were suggested to compensate the speed penalty,
in which a simple comparator circuit was used to demonstrate how parallel independent processing
of the data can achieve good compensation at the architectural level. In most digital signal process-
ing (DSP) applications, however, the problems encountered are much more complex. It is almost
impossible to directly decompose the problems into independent but parallel tasks. Therefore, the
properties of the DSP algorithms should be fully exploited in order to develop efficient compensation
techniques to compensate the loss of performance under low-power operations. The main issue here
is to reformulate the algorithms so that the desired output can be obtained without hindering the
system performance such as data throughput rate. We call such an approach the algorithm-based
low-power design. The ultimate goal is to achieve the low-power design requirement only at the
expense of larger chip area under current technology, without invoking dedicated arithmetic circuit
design, new expensive device material, and advanced VLSI fabrication technology.

In this paper, we will show how to design algorithm-based low-power architectures for transform
coding. An algorithm-based compensation technique using the multirate approach is proposed to
reduce the power consumption. To motivate the idea, let us consider the discrete cosine transform
(DCT) architecture in Fig.1. For most of the existing serial-input-parallel-output (SIPO) DCT algo-
rithms and architectures [2]{3], the processing rate must be as fast as the input data rate (Fig.1(a)).
In our low-power design, the DCT is computed from the reformulated circuit using the decimated
sequences (Fig.1(b)). It is now a multirate system that operates at two different sample rates. Since
the operating speed of the processing elements is reduced to half of the original data rate while the

data throughput rate is still maintained, the speed penalty is compensated at the architectural level.
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As to the power consumption, using the CMOS power dissipation model [1], we can predict that the
overall power consumption of the multirate design can be reduced to about one-third of the original
system. Therefore, the downsampling scheme provides a direct and efficient way for the low-power
design at the algorithmic/architectural level.

Two different approaches to achieve multirate low-power transform kernel design are presented in
this paper. One is based on the properties of the Chebyshev polynomial. The Chebyshev polynomial
derivation of the DCT/IDCT algorithm was first proposed in [4]. However, the architecture in
[4] needs global communication and requires O(N log N) multipliers. In our work, we treat the
transforms as the evaluation of a Chebyshev series. By exploiting the recurrence property of the
Chebyshev polynomial, we can compute the DCT/IDCT through the decimated sequences with linear
increase of hardware complexity; hence the speed penalty can be compensated. The other is based
on the polyphase decomposition approach which is an effective tool in multirate signal processing
[6]. By applying the polyphase decomposition to the IIR transfer functions of the DCT/IDCT (3],
we can also perform the DCT/IDCT using the multirate approach.

A major advantage of our multirate low-power architectures is that they inherit all advantages
of the SIPO transform architectures discussed in [2] and [3] such as local communication, regularity,
modularity, and linear hardware complexity. This makes the proposed architectures very suitable
for VLSI implementation. Also, the power consumption in the routing and layout of the chip can be
minimized. Moreover, unlike most parallel-input-parallel-output (PIPO) transform architectures, the
speed-compensation capability of our architectures is achieved at the expense of “locally” increased
hardware complexity and routing paths. Since the topological property (communications between
chip modules) is usually given the highest priority from the aspects of VLSI system design [6, chap.8],
this feature of local interconnection and local hardware overhead is especially preferable when the
transformation size is large (e.g., the MPEG audio codec in which a 32-point DCT/IDCT is used
(7].)-

In the companion paper [8], we will extend the low-power design to a larger class of transforms,
which leads to a unified transformation architecture. Some design issues, such as reduction of the
complexity for the compensation technique and the finite-wordlength behavior of the low-power
design, will also be considered. Those analyses provide us more insights to the algorithm-based
low-power design.

The organization of this paper is as follows. The derivation of the low-power IDCT/DCT algo-



Algorithm-Based Low-Powe Transform Coding Architectures-Part I 3

rithms and architectures based on the Chebyshev polynomial is described in Section 2. The multirate
ITR DCT/IDCT structures using the polyphase decomposition are presented in Section 3. The com-
parison of both low-power designs with other approaches is discussed in Section 4 followed by a

conclusion.
2 The Chebyshev Polynomial Approach
The nth order Chebyshev polynomial is defined as [9, chap 1]
Tn(n) = cos(nw), cosw=1n, ,-1<n<l1, (1)
which can be generated from the “three-term recurrence” formula,

Tout1(n) = 20 Tn(n) — Tn-1(n) (2)

with the initial condition Ty(n) = 1, T1(n) = n. Now consider the following Chebyshev series

N-1 N-1

1 1
Yo(n) = zag+ Y agcos(kw) = Zag + Y axTi(n), (3)
2 2
k=1 k=1
where ag, kK = 0,1,...,N — 1, are constant coefficients. One efficient way to evaluate Y.(n) for a

given value 7 is the Clenshaw’s algorithm [9, chap 3] [10, chap 4], in which a “backward recurrence

sequence” is defined as
bk(n) = 2,'7 bk+1(77) - bk+2(77) + g, fork=N— 1..., 1a0 (4)

with the initial conditions by (n) = by+1(n) = 0. After substituting (4) into (3), and applying the

recurrence formula in (2), we can simplify the evaluation of Y.(n) as

N-1 _
Yo(n) = 3" [en) — 21 bia () + beaa)}Ti () = 22— 2200, 5)
k=0
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Later in the DCT/IDCT, we will need the evaluation of

N-1 N-1
Vi) = 3 axcosh) = 3 axTu(n) )
k=0 k=0

It can be seen that by scaling ap by 2 (a left shift) beforehand, we can evaluate Y/(n) through the
same steps in (4)-(5). The corresponding architecture to evaluate Y/(n) is shown in Fig.2, where aq
has been pre-scaled by two. Since b;’s are generated in a “backward” manner, the input sequence
is in reverse order. The second-order recurrence structure in the middle computes b;’s according to
(4). After the last input is fed into the system, by(n) and ba(n) will be available and Y/(n) can be
evaluated from (5) with one addition and one right-shift operation.

Another two Chebyshev polynomial properties that will be useful in later derivations are [9, chap

3]

1. Composition property:

To(T: () = T(Ts(n)) = Trs(n), (7

which allows us to represent a higher-order Chebyshev polynomial using lower-order ones, and

vice versa.
2. Product-sum relationship:

Ty )T 1) = 3 (Tasa(n) + Tacr(), ®

which shows that the product of two Chebyshev polynomials can be decomposed into the sum

of two Chebyshev polynomials, and vice versa.

2.1 Chebyshev IDCT Architecture

In order to illustrate the relationship between the Chebyshev polynomial and the transforms, we will
begin with the derivation of the IDCT algorithm. Let X(k), k =0,1,---,N — 1, be a DCT-domain
sequence. The block IDCT to compute the time-domain sequence z(n), n =0,1,---, N —1, is defined
as

N-1
v(n) = Y CR)X (k) cosf 2t Ty )
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where
iy, ifk=0
Clhy=¢ VXN (10)

2 .
\/ %, otherwise

is the scaling factor used in the DCT/IDCT. If we define

A (2n+1)m

Wn = o (11)

and use the definition of the Chebyshev polynomial in (1), (9) can be written as

N-1

z(n) = > C(k)X (k) cos(kwn) = Z X' (k)T () (12)
k=0

where

Mo 2 coswn (13)

and X'(k) = C(k)X (k) is the scaled input data. Comparing (12) with (6), we see that the IDCT
with index n can be treated as the evaluation of Chebyshev series at 7, with coefficients X'(k),
k=0,1,...,N — 1. As a consequence, the recursive architecture in Fig.2 can perform the IDCT at
center frequency wy, if we replace the multiplier coefficient n with n,.

Fig.3 shows the IDCT structure based on the Chebyshev evaluation. It has two parts: the Reverse
Array (RA) and the IDCT module array. The RA consists of one serial-input-parallel-output (SIPO)
register array and one parallel-input-serial-output (PISO) register array. It provides the capability of
reversing the input sequence and scaling X (0) in a fully pipelined way. The IDCT module performs
(12) at different index n. Since n varies from 0 to N — 1, we need N IDCT modules to compute the
IDCT in parallel. The whole system works in a SIPO way and requires only N + 1 multipliers and
3N adders including the scaling multiplier in RA. The number of multipliers is almost as low as that
in Hou’s algorithm [11]. Besides, there is no restriction on the block size N and the regularity of our

IDCT architecture is more suitable for VLSI implementation.
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2.2 Chebyshev DCT Architecture

The DCT of the time-domain block data z(n), n =10,1,..., N — 1, is defined as

N-1
km
k 1) =0,1,...,N—1.

)nZ:‘Bw( ) cos[(2n + 2N] k=0,1,...,N—1 (14)

As with the derivation of the IDCT algorithm, the DCT can be represented as
N-1

n) cos[(2n + Dwi] = C(k) D @(n)Tant1 (k) (15)

n=0

X(k) =

=
p
3 =2
L1M7
1S3
~~

where wy, é T and ng = 2 cos wg. Multiplying Ti(n) on both sides of (15) and using the Chebyshev

property in (8), we obtain

LXK = Ok 'Y 2 (Toulme) + Tonsaln)]
n=0
N
= SO S ) Dame) (16
n=>0
where
x'(n)ém(n~1)+m(n), n=0,1,...,N (17)

with the assumption of z(—1) = z(N) = 0. Recall that T1(ng) = mx and Ton (k) = Tn(Ta(nx)) (from
(7). If we define

A
Mk = Ta(mk) = cos(2wg) = 20 — 1, (18)

X (k) in (16) can be computed as

X(k) = > 2 (n)Ta(ni), k=0,1,...,N—1 (19)

Ck) <~
20
Therefore, the DCT at center frequency wy can be obtained by evaluating the Chebyshev series at

the value nj, with coefficients z'(n),n =0,1,..., N, followed by the scaling of %&2
Note that the DCT of the reversed sequence Z(n) =z(N —1—n),n=0,1,...,N —1, is
N-1 N-1
2 1k
= C(k) :2:0 n) cos[(2n + Nwg] = C(k) Z z(n) cos[km — %],

n=0

(20)
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for k =0,1,...,N — 1. We can relate X(k) to X(k) by X (k) = (-1)FX (k). As a result, the RA,
which is used to reverse the input sequence, can be eliminated by complementing the odd-indexed
X (k)’s while keeping the even-indexed X (k)’s unchanged. Fig.4 shows the architecture to implement
the Chebyshev DCT algorithm. The overall Chebyshev DCT architecture needs a total of 2N — 2
multipliers and 3N — 1 adders. It should be noted that the total number of z'(n) is N + 1. Therefore,
an extra zero is appended after (N — 1) for the generation of z'(n), n=0,1,..., N. After 2’'(N) is

sent to the DCT array, we can obtain the DCT coefficients in parallel at the array outputs.

2.3 Low-Power Design for the DCT/IDCT

Consider the Chebyshev series in (6) and split it into the even and odd series:

N/2-1 Nj2-1
Yo(n) = Y aaTu(n)+ Y, asis1Thiti(n)
i=0 i=0
= Yo(n) + Yo(n) (21)

where Y,(n) and Y,(n) denote the even and odd series, respectively. By the use of (2) and (7), Y (n)

can be written as

N/2-1 N/2-1
Yem) = Y. aaTi(Ta(m) = . anTi(n) (22)
i=0 i=0

with 7 = 27 — 1. On the other hand, Y,(n) can be converted into an even series by following the
derivations in (15)-(19):
N/2
Yo(n) = klagi-1 + ai1) Ti(n'). (23)
=0

where k = 515 is a pre-calculated constant coefficient. Now combining (22) and (23) together, we

have
N/2 N/2
Y(n) =Y _lagi + s(agi-1 + azi)ITi(n') = Y diTi(n') (24)
i=0 i=0
with
A . N
d; = ag; + k(agi—1 + ag+1), 1=0,1,...,—. (25)
-~ -~ . 2
even odd

From (24) we can see that the evaluation of a N-point Chebyshev series can be reduced to a (N/24-1)-
point evaluation using the new sequence d;’s which are composed of decimated sequences. This new

evaluation method can be easily applied to the computation of the IDCT/DCT as described in Section
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2.1 and Section 2.2. The resulting IDCT architecture is depicted in Fig.5, where s, = 1/(2n,) and
m, = 2n2 — 1 with 7, defined in (13). Firstly, a;’s in (24) are replaced with X (i)’s in (9), for
1=0,1,... N — 1, then we use one decimation circuit and one adder to compute the even and odd
sequences in (25) from the X (i) sequence in a fully-pipelined way (see the left-hand side of Fig.5).
After these two decimated sequences are reversed by the RA, they are combined together to generate
d;’s in (25), and d;’s are sent to the IDCT module to perform the Chebyshev evaluation in (24). Once
the evaluation is completed, we have the IDCT coeflicient with index n at the module output. Since
the operating frequency halves after the decimator, now we can use two times slower multipliers and
adders in this IDCT module with some hardware overhead. Meanwhile, the throughput rate is still
retained. Similarly, the multirate Chebyshev DCT architecture can be derived as shown in Fig.6,
where x}, = 1/(2n), 7 = 21,> — 1, and 7, is defined in (18).

To achieve downsampling by four, we can recursively compute another new (N/4 + 1)-sequence

e; from d;, which results in

e = K'K[(a4i-3 + a4it1) + (a4i—1 + a4i43)] + £’ (Qg0—2 + 4i+2) + £(agi—1 + a4541) + aui,

° (26)
for ’l.=0,1,...,';1',

where k' = 2+7, is also a pre-computed constant. One possible realization of (26) is depicted in Fig.7.
Once the e;’s are computed from the decimated sequences a4;4%, £ = 0,1,2,3, the evaluation of

Y!(n) can be computed as
N/4

Y/(n) =Y eTi(n") (27)
=0

with 1 = 2n" — 1. Likewise, based on (26) and (27), we can also construct the multirate IDCT
and DCT architectures as shown in Fig.8 and Fig.9, in which only four times slower operators are
required to compute the transform coefficients.

2.3.1 Power Estimation for the Low-Power Design

Now let us consider the power dissipation of the low-power architectures. The power dissipation in

a well-designed digital CMOS circuit can be modeled as [12]

P Cop - Viy+ foiks (28)
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where Cep is the effective loading capacity, V4 is the supply voltage, and f.y is the operating
frequency. Also, the lowest possible supply voltage V;, can be approximated by [1][13]
Via  _ Vaa
(Vi — Vo) (Vaa — V1)¥

where M is the decimation factor and V; is the threshold voltage of the device.

Assume that Vyy = 5V, V4 = 0.7V in the original system. For the 16-point Chebyshev IDCT
under normal operation, it requires 18 multipliers and 48 adders. For the low-power 16-point IDCT
with M = 2, 34 multipliers and 65 adders are required. From (29), it can be shown that Vj; can be
as low as 3.1V for the case M = 2. Provided that the capacitance due to the multipliers is dominant
in the circuit and is roughly proportional to the number of multipliers, the power consumption of

the low-power design can be estimated as

34 3.1V , .1
(Eceﬁ)(w)2(§f) ~ 0.36 R, (30)

where Py denotes the power consumption of the original system. Similarly, for the case M = 4,
the 16-point IDCT needs a total of 66 multipliers and 100 adders. Since the lowest possible supply
voltage can be 2.1V (from (29)), the total power can be reduced to

66 21V

1

)2(=F) = 0.16 . (31)

( 4

Therefore, we can achieve low-power consumption at the expense of reasonable complexity overhead.

Such a tradeoff will be considered in Section 4.

3 The Polyphase Decomposition Approach

Performing orthogonal transforms based on the IIR transfer function approach was studied in [3]. By
considering the transform operator as a linear shift invariant (LSI) system that maps the serial input
data into their transform coefficients, the authors in [3] have shown that most discrete sinusoidal
transforms can be realized by using a unified IIR structure. In this section, we will show that,
in addition to the Chebyshev approach, we can also derive the multirate low-power DCT/IDCT
algorithms/architectures by applying the polyphase decomposition [5] to the IIR transfer functions
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in [3]. We will see later that the polyphase decomposition approach provides a systematic way for

architectural low-power design.

3.1 The ITR DCT Algorithm

The one-dimensional (1-D) DCT of a series of input data starting from z(t — N + 1) and ending at
z(t) is defined as

N-1

XDCT,k(t) = C(k:) Z cos[(2n + 1)

n=0

km
for k=0,1,2,...,N — 1. A second-order IIR transfer function can be derived from (32) as [3]

_ Xporx(2) _ b _-ny COk)coswy(l — 271
Hooralz) = X(z) (1) == )1 —2c08 2wz~ + 272

(33)

where wy, = f—;\’,, Xper(z) and X(2z) denote the z-transforms of Xpcer x(t) and z(t), respectively.
For block processing, the z~% in (33) can be eliminated because of the reset operation for every N
cycles. The corresponding IIR structure to compute the k** frequency component of the DCT is
shown in Fig.10, in which

Ce(m) 2 (=1)*C (k) cos mwy,. (34)

Once the last serial input z(t) is fed into the module, the DCT coefficients can be obtained at
the module outputs in parallel. The resulting parallel architecture is regular, modular, and fully-
pipelined. Also, the SIPO feature can avoid the input buffers as well as the index mapping operation
that are required in most PIPO DCT architectures [11][14]. One disadvantage of the IIR structure
in Fig.10 is that the operation speed is constrained by the recursive loops. In what follows, we
will reformulate the transfer function using the multirate approach so that speed constraint can be

alleviated.

3.2 Low-Power Design of the IIR DCT

Splitting the input data sequence into the even sequence

Ze(t,n) =z(t+2n—-N+1), n=0,1,...,N/2 -1, (35)
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and the odd sequence

Zo(t,n) =zt +2n—N+2), n=0,1,...,N/2 -1, (36)
(32) becomes
N/2-1 ke N/2-1 ko
Xper,x(t) = C(k) Z cos[(4n + 1)2_N] ze(t,n) + C(k) Z cos[(4n + 3)W] Zo(t,m). (37)

n=0 n=0

Taking the z-transform on both sides of (37) and rearranging, we have

_ CR)((=1)F = 27N
Xpor(2) = 1 —2cosdwpz 1+ 272

([Xe(z) — Xo(2)2 7 cos 3wy, + [Xo(2) — Xe(2)2™ cos wk)
(38)

where X.(z) and X,(z) are the z-transforms of z.(t,n) and z,(f,n), respectively. The parallel
architecture to realize (38) is depicted in Fig.11. The common circuit at the left-hand side decimates
the input serial data into the even and odd sequences and generates the common inputs for the module
array. The numerator part and the denominator part of (38) are realized by the FIR structure and
the IIR structure inside each DCT module at different index k. The overall architecture requires
(3N — 3) multipliers and (3N + 1) adders plus a decimation circuit. Compared with the IIR DCT
structure in Fig.10, this multirate DCT structure needs only (N — 1) extra multipliers and (N + 1)
extra adders.

To achieve downsampling by the factor of four, we can split the input data sequence into four
decimated sequences

gi(t,n) 2zt + (n+4) - N+1), i=0,1,2,3, (39)
for n =0,1,...,N/4 — 1. Following the derivations in (37)-(38), we can write Xpcr 1(2) as

1k _ N/
Xperp(2) = 10_(12((:((38 ;Z)kz_f - z_)2 ([Go(z) — G3(z)z Y cos Twy, + [G1(2) — G2(2)z 1] cos 5wy

+ [Ga(2) — Gi(z)z7 ] cos 3wy, + [G3(2) — Go(2)z™ Y cos wk) : (40)

where G;(z) is the z-transform of g;(¢,n), 4 = 0,1,2,3. The corresponding multirate architecture is
shown in Fig.12.
From Fig.11 and Fig.12, we can see that basically the multirate DCT architectures retain all ad-
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vantages of the original ITR structure in [3] such as modularity, regularity, and local interconnections.
It is also interesting to note that the increase in hardware overhead grows only locally rather than
globally, and the DCT architecture with M = 4 can be generated by reusing the modules in the
M = 2 design (e.g., the FIR/IIR structures and the lattice structure in the common circuit). There-
fore, neither global routing nor new module design is required in the M = 4 case. The characteristics
of scalability, modularity, and local interconnections make the multirate structures very suitable for
VLSI implementation. Unlike most PIPO DCT algorithms in which the interconnections will take
up much of the chip area, the feature of local communications of our design can greatly reduce the
power dissipation in the routing area. From the discussions in Section 2.3, it can be shown that the
total power consumption for the multirate 16-point DCT can be reduced to 0.29F; for M = 2, and
0.11P, for M = 4, respectively. The significant power savings for the design with M = 4 is achieved
only at the cost of 3N — 3 extra multipliers and 3N + 3 extra adders.

3.3 Low-Power Design of the ITR IDCT

The IIR transfer function for the block IDCT is given by [3]

(-1)"C(1)sinwy,
Hipern(2) = 1 —2coswpz~! + 272

+(C(0) — C(1))z~ V=D, (41)

where wy, = 237{,1 7. As with the derivations of the low-power IIR DCT, the multirate transfer function

for the IDCT with M = 2 can be derived as

Xiporals) = 1l OO (Xel)sinZun + (1 +27)Xo(2) sinws)
+ (C(0) - 1)z~ V-V X (2). (42)

Similarly, the transfer function for M =4 is

-1H)"C(1 ) 11 .
Xipera(z) = T 2c(os 4)wnz(‘1)+ po (Go(z) sin 4wy, + [G1(2) + G3(2)z "] sin 3wy

+ (14 27Y)Ga(2)sin 2wy, + [G3(z) + G1(z)z7 1] sinwn)
+ (C(0) = C(1)z~ V-V X (2). (43)
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The corresponding low-power IIR IDCT structures based on (42) and (43) are shown in Fig.13 and

Fig.14, respectively, where the multiplier coeflicient is defined as

>

Is(m) = (—-1)"C(1) sin mwy,. (44)

As we can see, the low-power IDCT design has similar structures as the low-power DCT except little
difference in the common circuit. Therefore, it is possible to integrate both the forward and backward
transforms into one architecture by suitably multiplexing the data path in the common circuit and

the coefficients inside the modules.

3.4 Polyphase Representation

In the preceding discussions, we have shown how to perform the multirate DCT/IDCT by rearranging
the z-transforms of the decimated sequences. Here we will show a systematic way to derive the results
by applying the polyphase decomposition to the original IIR transfer function.

Substitute the identity that

1 _1+2cos 2wzt + 272
1—2cos2wpz=l+ 22 1—2cosdwpz—2 + 24

(45)

into the IIR DCT transfer function in (33). After rearranging, Hpcr,x(z) under block processing

can be written as

—DkC(k _
Hperp(2) = % [H0(22) + z 111’1(22)] (46)
where
D(z*) = 1-2cosdwpz 2+ 274,
Ho(2®) = (coswy — cos3wpz™2),
Hi(2%) = (cos3wy — coswyz™2). (47)

(46) is the polyphase representation of Hpcr,x(z) with M = 2, and its corresponding polyphase
implementation is shown in Fig.15(a). The downsampling operation | N at the right end denotes
that we pick up the DCT coefficients at the N clock cycle and ignore all the previous intermediate

results. Given this polyphase implementation, we can use the noble identites [5] to distribute the



Algorithm-Based Low-Powe Transform Coding Architectures-Part I 14

downsampling operation towards the left and obtain Fig.15(b), which will lead to the multirate DCT
architecture in Fig.11. Thus, we can process the input data at two times slower clock rate. After
N/2 iterations, the DCT coeflicients are available at the output ends. Similarly, M = 4 can be
achieved by performing another polyphase decomposition on D—égj in (46). After some algebraic
simplifications, we can obtain (40) and its corresponding implementation allows us to operate at four
times slower clock rate. The polyphase decomposition can also be used to derive the results for the
multirate IDCT. In the companion paper [8], we will apply this methodology to obtain the low-power

architecture of logarithmic complexity as well as the unified transformation module design.

4 Comparisons of Architectures

In this section, we would like to discuss the hardware complexity of the two algorithm-based low-
power approaches (the Chebyshev polynomial approach and the polyphase decomposition approach)
proposed in this paper. Also, we will compare the proposed multirate SIPO architectures with the
existing SIPO and PIPO architectures [3][14]. Table 1 summarizes the hardware cost for all the
proposed architectures under normal operation and under multirate operation (M = 2,4). As we
can see, the hardware overhead of the low-power design is linear complexity increase for the speed
compensation. As to the two approaches (Chebyshev and polyphase), the Chebyshev IDCT requires
(N —1) less multipliers than the IIR IDCT in both normal and multirate operations. This saving is in
particular preferable for the applications which require cost-effective IDCT such as HDTV receivers.
On the contrary, the Chebyshev DCT has almost the same complexity as the IIR DCT. Since the
Chebyshev DCT needs one more iteration to finish the transform, the polyphase IIR DCT is a better
choice for the implementations.

Next, we would like to compare our low-power DCT architecture with those proposed in [14]
and [3]. The architecture in [14], which utilizes factorization method to perform fast DCT, is a
typical representative of the PIPO fast algorithms. The IIR structure proposed in [3], on the other
hand, is a good example of the SIPO algorithms. A comparison regarding their inherent properties
is listed in Table 2. The advantages of the SIPO approach over the PIPO approach in their VLSI
implementation, such as local communication and linear hardware complexity increase, have been
discussed thoroughly in [2] and [3]. Nevertheless, when the speed compensation capability is of

concern, the PIPO is also a good choice since the block PIPO processing with block size N is
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equivalent to decimating the input data by a factor of N. However, this advantage is obtained at the
price of globally increased hardware and routing paths. Besides, the block size is usually restricted
to be power of two due to the “divide-and-conquer” nature of those PIPO fast algorithms. From
Table 2, we can see that our multirate STPO approach is a good compromise between the other
two approaches. Basically, the multirate approach inherits all the advantages of the existing SIPO
approach; meanwhile, it can compensate the speed penalty at the expense of “locally” increased
hardware and routing, which is not the case in the PIPO approach. Although some restriction is

imposed on the data size N due to the downsampling operation, i.e.,
N =Mk, kez* (48)

(M is the decimation factor and Z* denotes any positive integer), the choice of N is much more
flexible compared with the PIPO algorithms.

The other advantage of the SIPO approaches is in the computation of the pruning DCT [15].
In the DCT-based signal compression algorithms, the most useful information of the signal is kept
in the low frequency DCT components. Therefore, retaining only Ny < N coeflicients is sufficient
for the lossy data compression. Although the pruning DCT can be computed from the PIPO DCT
architecture by removing the unnecessary data paths and computational operators [15], the global
communication is still the major drawback for its implementation as IV increases. On the contrary,
the SIPO architecture in [3] and our low-power deéign can be readily applied to the pruning DCT by
simply implementing the first Ny DCT modules for the computation of the first Ng DCT coefficients.

5 Conclusions

In this paper, we presented the algorithm-based low-power design of the transform coding kernels
based on the multirate approach. We have shown that by either exploiting the properties of the
Chebyshev polynomial or reformulating the IIR DCT/IDCT algorithms, we can reduce the operating
frequency of the transforms at the architectural level without degrading the system throughput rate.
Such compensation capability will lead to drastic savings in the total power consumption. Therefore,
the proposed low-power transform coding kernels will be effective for the low-power/high-performance

signal processing systems.
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It is worth mentioning that since the multirate approach is derived at the word level, other
arithmetical-level techniques, such as bit-level downsampling [16] and distributed arithmetic [17][18],
can be employed in the VLSI implementation to further reduce the power consumption. In general,
they do not explicitly exploit the inherent properties of the orthogonal transforms. As a result, they
achieve the speed compensation at the arithmetical level rather than at the algorithmic level.

The other attractive application of our design is in the very high-speed signal processing. Presently,
in most VLSI implementation of the orthogonal transforms, the input data rate is limited by the
speed of the adders and multipliers in the circuit. In the video-rate applications such as HDTV,
the speed constraint will result in the use of expensive hig-speed multiplier/adder circuits or full-
custom design. Thus, the manufacturing cost as well as the design cycle will increase drastically. By
employing the multirate parallel architectures discussed in this paper, the speed constraint can be
resolved at the architectural level with the same design environment and fabrication technology. For
example, if we want to perform DCT for serial data at 200 MHz, we may use the parallel architecture
in Fig.12, in which only 50MHz adders and multipliers are required. Therefore, we can perform very

high-speed DCT by using only low-cost and low-speed processing elements.
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Normal Operation | Downsampling by 2 | Downsampling by 4 | Extra
(M =2) (M =24 iteration
Multiplier | Adder | Multiplier | Adder | Multiplier | Adder
Chebyshev DCT 2N-2 |3N—-1| 3N -3 4N SN -5 |[6N+3 Yes
Chebyshev IDCT N +2 3N 2N+2 |4N+1| 4N+2 |6N+4 No
IIR DCT 2N —2 2N 3JN-3 |3N+1]| 5N—-5 |[5N+3 No
IIR IDCT 2N +1 3N 3N+1 [4N+1| 5N+1 |[6N+2 No

Table 1: Comparison of hardware cost for the DCT and IDCT architectures with their low-power
designs in terms of 2-input multipliers and 2-input adders.

Liu et. al. [3] | Proposed multirate IIR Lee [14]
DCT with M =4
Data processing rate fs fs/M fs/N
No. of Multipliers 2N -2 (M + 1)N (in order) (%) log, N (in order)
No. of Adders 2N (M 4+ 1)N (in order) (¥)1ogy N
Latency N N (logy N(log, N — 1)]/2
Restriction on transform size N No Mk,ke Z* 2k ke Z*t
Requirement for input buffer No No Yes
Index mapping No No Yes
Communication Local Local Global
I/O operation SIPO SIPO PIPO
Speed compensation capability N/A Good Good
( at the expense of ( at the expense of
locally increased globally increased
hardware overhead hardware overhead
and local routing ) and global routing )
Power consumption Negligible Negligible Noticeable
in routing as N increases
Application to pruning DCT Direct Direct Needs many modifications

and global interconnections

Table 2: Comparisons of different DCT architectures, where f; denotes the data sample rate, M
denotes the programmable downsampling factor, and N is the block size.
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Figure 1: (a) Original STPO DCT circuit. (b) Low-power DCT circuit using the multirate approach.
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Figure 3: Parallel Chebyshev IDCT architecture.

(~1)*C(k)
(n b0 21k
0, X(N-1),...x(1),x(0) e @ > > X(k)

I Module My .k=12,..N-1

X(0)

| Module M
DCT Module Array

Figure 4: Parallel Chebyshev DCT architecture.
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Figure 5: Low-power parallel Chebyshev IDCT architecture with decimation factor of two.
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Figure 6: Low-power parallel Chebyshev DCT architecture with decimation factor of two.
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Figure 7: Evaluation of e; using the downsampling circuit.
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Figure 8: Low-power parallel Chebyshev IDCT architecture with decimation factor of four, where

n! =2(n)? — 1 and !, = 1/(27},).
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Kl = 1/ " and 0" = 2( 11)2 - 1.
k Mk Mk Mk

@ Xper.x(t)
2 cos 2wy [Z\:l
@—<
!Z-l |
I Module My k= 12,....N-1
@ Xpor,o(t)

| Module M
IIR DCT Module Array

Figure 10: IIR DCT architecture.
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Figure 11: Low-power polyphase IIR, DCT architecture with M = 2.
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Figure 12: Low-power polyphase IIR DCT architecture with M = 4.

25

Xpor.k(t)

XpeT,0(t)



Algorithm-Based Low-Powe Transform Coding Architectures-Part I 26

@ XipeT,n(t)

0 NpEL e - L

AN-1) [Zj
Z
—fa

e . [Z,:l
—D> p o

v .
70 - ) R e I roecre
g I Module M, n=0,1,....N-1
f <— — {72 IIR IDCT Module Array
Operatiné Frequency

Figure 13: Low-power polyphase IIR IDCT architecture with M = 2.
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Figure 14: Low-power polyphase IIR IDCT architecture with M = 4.
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Figure 15: (a) Polyphase representation of Hpcr k(2). (b) Polyphase representation of Hper,k(2)
after applying the noble identity.



